

A Testing Strategy for the Identification of mammalian Endocrine Disruptors with particular focus on steroids

Tzutzuy Ramirez, Robert Landsiedel, Susanne Kolle, Hennicke Kamp, Bennard van Ravenzwaay

Our understanding of endocrine disruptors

Weybridge 1996:

"An endocrine disrupter is an exogenous substance that causes **adverse health effects** in an intact organism, or its progeny, **secondary (consequent) to changes in endocrine function**".

WHO 2002:

"An endocrine disrupter is an exogenous substance or mixture that alters function(s) of the endocrine system and consequently causes <u>adverse</u> effects in an <u>intact organism</u>, or its <u>progeny</u>, or (sub)populations."

"Endocrine disruption" is potentially a cut-off criterion without any risk assessment

1989: The beginning Study case: Vinclozolin

Anti-androgenic effects in:

- prenatal developmental toxicity study: reduced ano-genital distance

2-generation study:

 a syndrome of changes resulting in a <u>feminization</u> of male rat offspring reduced prostate & seminal vesicle weight and activity hypospadia vaginal pouch delayed / incomplete testicular decent

can be explained by several modes of action:

- 1) Reduction of hormone synthesis
- 2) Increased breakdown of hormones
- 3) Receptor block

BASFThe Chemical Company

Overview of the Tier-1 EDSP battery

In vitro

- Androgen receptor (AR) binding -rat prostate cytosol
- Estrogen receptor (ER) binding rat uterine cytosol
- Aromatase Human recombinant aromatase
- human estrogen receptor a transcriptional activation in HeLa-9903 line (OECD 455)
- Steroidogenesis in H295R line (OECD 456)

In vivo

- Uterotrophic (rat) (OECD 440)
- Hershberger (rat) (OECD 441)
- Pubertal female (rat)
- Pubertal male (rat)
- Amphibian metamorphosis (frog)
- Fish short-term reproduction

Development and Registration of Agrochemicals: Screening and Selection

Years Substances ~140.000 ~25.000 Laboratory 1 ~7.500 Greenhouse **Field** >100 Various crops Toxicology 3-10

BASF

An integrated strategy for detection of Endocrine Modes of Action under 3Rs TIER 1

Assessment for Mammalian Endocrine Activity

Tier 1: Yeast Estrogen/ Androgen Screening Assays (YES/YAS)

Agonist

- Yeast estrogen/ androgen screening assay
- Recombinant yeast strains expressing human ER or AR and reporter gene.
- Agonistic and antagonistic effects measureable
- Determination of effect by reporter assay

BASF

Tier 1: Yeast Estrogen/ Androgen Screening Assays (YES/YAS)

BASF

Tier 1: Yeast Estrogen/ Androgen Screening Assays (YES/YAS)

— Vinclozolin + 5*10-9M DHT

-3

-3

YES YAS 200% 200% 180% 180% 100%) Relative Reporter Activity (PC = 100%) 160% 160% Activity (PC = 140% 140% 120% 120% 100% 100% т Relative Reporter 80% 80% ನ 60% 60% 40% 40% 20% 20% т 0% 0% -12 -11 -10 -13 -9 -8 -7 -6 -5 -4 Concentration log [M] 200% 200% 180% 100%) Ž 180% Activity (PC = 100%) 160% 160% 140% Relative Reporter Activity (PC 140% 120% 120% т 100% 100% 80% Relative Reporter 80% 60% 60% 40% 40% 20% 20% т Δ 0% 0% -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -12 -13 -11 -10 -9 -8 -7 -6 -4 -5 Concentration log [M] Concentration log [M] -A-DHT ____E2 10-5M HF + 5*10-9M DHT 10-6M OH-T + 10-9M E2 -Vinclozolin

In house validation of the YES/YAS with 105 substances

D BASF The Chemical Company

Androgens/antiandrogens: reported activity and test results.a,b

Name	CAS	Class	YES/YAS Result			Literature				
			Е	AE	А	AA	Е	AE	А	AA
1a,25-Dihydroxyvitamin D3 (Calcitriol)	32222-06-3	Other chemicals	_	+	_	+	0	+	0	+
2,4-Dihydroxybenzo-phenone	131-56-6	Antiandrogen	+	d[-]	_	+	+	+	_	+
4,4-Biphenol	92-88-6	Antiandrogen	+	_	(+)	+	+	+	_	+
4,4'-DDD (Dichlorodiphenyl-dichlorethane)	72-54-8	Antiandrogen	_	_	_	+	+	0	0	+
4-Androstene-3,17-dione	63-05-8	Other chemicals	_	+	+	_	_	0	+	_
4-n-Octylphenol	1806-26-4	Other chemicals	_	_	_	(+)	_	_	_	+
4-tert-Octylphenol	140-66-9	Other chemicals	+	d[-]	_	+	+	+	_	+
6α-Methyl-17αhydroxy-progesterone(Medroxyprogesterone)	520-85-4	Androgen	_	+	+	_	_	+	_	+
Apigenin	520-36-5	Estrogen	(+)	_	_	_	+	_	0	+
Benzophenone	119-61-9	Antiandrogen	(+)	(+)	_	+	(+)	0	0	+
Benzylbutylphthalate	85-68-7	Antiandrogen	(+)	_	_	+	+	_	_	+
Bicalutamide	90357-06-5	Antiandrogen	_	+	+	d[-]	+	0	+	+
Bis(2-ethylhexyl) phthalate (DEHP)	117-81-7	Other chemicals	_	_	_	_	0	0	+	_
Bisphenol A	80-05-7	Estrogen	+	_	_	+	+	_	_	+
Bisphenol A-dimethacrylate	3253-39-2	Estrogen	(+)	_	_	_	+	_	0	+
Corticosterone	50-22-6	Other chemicals	_	(+)	_	+	_	+	_	+
Cyproteronacetate	427-51-0	Antiandrogen	_	+	+	(+)	_	0	+	+
Dibenz[a,h]anthracene	53-70-3	Other chemicals	_	_	_	_	_	+	+	_
^c Dibutylphtalate	84-74-2	Other chemicals	+	_	_	+	_	_	_	+
Dihydrotestosterone	521-18-6	Androgen	+	_	+	_	+	0	+	_
Dihydroxymethoxychlor (HPTE)	2971-36-0	Estrogen	+	_	_	+	+	_	_	+
Diisononylphthalate (DINP)	28553-12-068515-48-0	Other chemicals	_	_	_	_	_	_	_	+
Di-n-amylphthalatedipentyl phthalate	131-18-0	Antiandrogen	_	+	_	+	_	_	_	+
Estrone	53-16-7	Estrogen	+	_	+	_	+	_	+	_
Ethinylestradiol	57-63-6	Estrogen	+	_	(+)	+	+	0	_	+
Fenarimol	60168-88-9	Estrogen	+	_		d[-]	+	_	0	+
mi . ii	00040 00 7	4 1							-	-

Detection of estrogenic compounds with accuracy of 87%, antiestrogenic with 90%, androgenic with 95% and antiandrogenic with 85%.

(Kolle, et al., Toxicol. In Vitro 24(7), 2030-2040).

Tier 1: Steroidogenesis assay OECD TG 456 and OPPTS 890.1550

The objective of the steroidogenic screen assay is to detect any substance that would disrupt estrogen and/or androgen gonadal steroid hormone production.

Figure 3.1: Steroidogenic pathway in H295R cells. Enzymes are in italics, hormones are bolded and arrows indicate the direction of synthesis. Gray background indicates corticosteroid pathways/products. Sex steroid pathways/products are circled. CYP = cytochrome P450; HSD = hydroxysteroid hydrogenase.

Tier 1: Effects of vinclozolin on the levels of estradiol and testosterone

Estradiol 11-Deoxycorticosterone Testosterone 3.5 120 Pregnenolone Progesterone 3.0 - 100 17α-Hydroxy-Progesterone -> 21-Deoxycortisol 2.5 Fold Change (SC = 1) 5.1 80 Viability (SC = 100%) CYP11B1 60 11-Deoxycortisol Cortisol 40 1.0 CYP19 Androst-4 ene-3,17 dione Estrone 20 0.5 CYP19 0.0 17 β-Estradiol Testosterone 0 (SC) 0.3 1 3 10 30 100 300 Vinclozolin [µM]

BASF

An integrated strategy for detection of Endocrine Modes of Action under 3Rs TIER 2

Assessment for Mammalian Endocrine Activity

Tier 2: *In vivo* 28 day study combined with metabolomics analysis

Analysis of effects of 14 compounds tested *in vitro* and *in vivo*

Substance	CAS No.	YES	YAS	H295R E ₂ levels	H295R T levels	Metabolome analysis ^e
Bisphenol A	80-05-7	E _ a	ĀĀ	\uparrow	\downarrow	+/-
Caffeine	58-08-2	-	-	_ b	_b	-
Colchicine	64-86-8	- _a	-	_ b	_ b	-
		-				_

Of the nine known EDCs all substances were determined to exert receptor mediated and/or biosynthesis related mechanisms.

The effects were confirmed by in vivo metabolome analysis in the OECD TG 407 study.

testosterone	50 10 4	AE	- a	¥	'	А
Tamoxifen	10540-29-1	E AE	- (AA)	\downarrow	\downarrow	E A adrenal steroid synthesis inhibition ^f
Trenbolone	10161-33-8	E -	A _ ^a	_d	_d	E A
Vinclozolin	50471-44-8	- _ a	ĀĀ	\uparrow	\downarrow	AA adrenal steroid synthesis inhibition ^f
Zearalenone	17924-92-4	E _ ª	- AA	\uparrow	\uparrow	E

15

Assessment of mammalian endocrine effects using a combination of *in vitro* assays and *in vivo* assays

16

BASF

Tiered Testing for Identification of Endocrine Disruption

Retrospective analysis of in house data showed that with the proposed testing strategy additional *in vivo* studies **Hershberger assay** (OECD 441), **uterotrophic assay** (OECD 440), **pubertal assays** are not needed.

Thank you

