Modelling Local and Systemic Toxicity: Incorporation of *In Silico* Predictions in the Development of Adverse Outcome Pathways

Judith Madden QSAR and Modelling Group

In Silico Prediction

Activity (e.g. toxicity)of a chemical

 ∞

Molecular (structural) properties

Certain endpoints easier to predict than others

Methods need to be transparent

 Newer methods such as category formation (grouping) & readacross can be applied to complex endpoints & are transparent

Adverse Outcome Pathway for Skin Sensitisation

- The AOP provides a method to represent the Key Events involved
- Key Events are measurable and toxicologically relevant

- NB pathway may be non-linear; adaptive & regulatory responses may be involved
- Realistic exposure scenario need to be considered

Key Events in Skin Sensitisation AOP

Key Event 1 Molecular Initiating Event

Covalent binding interaction

Electrophile

Nucleophile on skin protein (cysteine/lysine)

Key Event 2

Cellular response

Keratinocyte inflammatory response

Key Event 3

Cellular response

Dendritic cell activation

Key Event 4

Organ Response

Lymph node - activation of T-cells proliferation of activated T-cells

Skin: 🖒

Inflammation on challenge with antigen

Key Events in Skin Sensitisation

Covalent binding interaction

Nucleophile on skin protein (cysteine/lysine)

Keratinocyte inflammatory response

Key Event 3

Cellular response

Dendritic cell activation

Lymph node - activation of T-cells proliferation of activated T-cells

Skin: **C**Inflammation on challenge with antigen

Accumulating Information to Develop AOPs

- The Molecular Initiating Event (MIE) (initial interaction between chemical and biological system) is a Key Event
 - Hypothesis or evidence required for Key Events
 - Evidence can be accumulated from a range of sources

In Silico

Creating
Structural Alerts
/ Profilers
Identifying MIEs

In Chemico

Direct Peptide
Reactivity
Assay
Glutathione
depletion

In Vitro

MUSST/h-CLAT
Ames Test
Mitochondrial
Damage
Oxidative Stress

In Vivo

GPMT LLNA Human Patch Test Toxicity Assays

 Capturing the chemistry underlying an MIE can be used to develop Structural Alerts / Profilers for grouping chemicals into categories

Structural Analogues

Mode of Action Analogues (Binding to oestrogen receptor)

Mechanistic analogues (Michael addition reaction)

Mechanistic Structural Alerts and Profilers Developed:

Protein binding relating to skin & respiratory sensitisation

Use knowledge of mechanistic chemistry domain e.g.

Acylation

Schiff Base Formation

104 structural alerts developed for protein binding (46 associated with skin sensitisation)²; 52 structural alerts for respiratory

52 structural alerts for respiratory sensitisation

Also 57 structural alerts developed for DNA binding²

Derive associated SMARTS¹ patterns (e.g.CC=OC;

Encode into profilers

Grouping Chemicals for Read-Across

Structural Alerts for Hepatotoxicity

951 compound dataset* (650 +ve)

Grouped by structural similarity
- using Toxmatch software

Example SMARTS Patterns

- 1. C=CC=CC=CC=O
 - 2. CICCNCCCI
 - 3. O=C1CCC2C3CCC4CCCC4C3CCC2=C1

Group (category) acceptable if:

contained ≥ 6 compounds

and similarity index ≥ 0.6

and

visually appeared similar

16 structural alerts*
(key fragments) identified

Alerts used to re-screen dataset no. category members

Literature search for putative mechanisms of toxicity

Mechanisms proposed for ~25% of hepatotoxicants in dataset

Using the Information to Predict Toxicity

- Profilers can be used to form groups of compounds (categories)
- Structural or mechanistic knowledge of category members can be used to infer information concerning an (unknown) compound of interest i.e. a read-across prediction

Enables
 transparent,
 justifiable
 predictions to be
 made

Tools for Category Formation & Read-Across:

OECD QSAR Toolbox

The COSMOS Project

Integrated *in silico* models for the prediction of repeated dose toxicity of **COSM**etics to **O**ptimise **S**afety

- Developing tools for predicting repeat dose toxicity
 - database of relevant toxicity & ADME data
 - building (Q)SARs
 - identifying structural alerts creating profilers for category formation
- Freely available as KNIME workflows

www.cosmostox.eu

Conclusions and Outlook

- AOPs provide a framework for organising information
 - The MIE is a key event () in an AOP
- Understanding mechanistic chemistry enables structural alerts / profilers to be built associated with an MIE
- Categories (groups) can be based on structural similarity & potential mechanisms investigated
- Literature or experimental evidence provides support for AOPs
 - Link in silico investigation to directed in vitro analysis
 - Confirmation of effects; defining chemical space of alert
- Improvements needed in tools to capture and use information
 - Toolbox; Effectopedia
 - Mitigating factors need to be considered
 - More quantitative predictions in future

Category formation (grouping) & read-across provide more transparent, acceptable methods of predicting toxicity

Acknowledgements

Staff Mark Cronin Steve Enoch Andrea-Nicole Richarz Katarzyna Przybylak Mark Hewitt Mark Nelms Fabian Steinmetz Przymyslaw Piechota

The funding from the European Community's Seventh Framework Program (FP7/2007-2013) COSMOS Project under grant agreement n°266835 and from Cosmetics Europe is gratefully acknowledged. Funding from the eTOX project, grant agreement no. 115002 under the Innovative Medicines Initiative Joint Undertaking (IMI-JU) is also gratefully acknowledged.

Thank you for your attention!